
Michael Sutton is a Director for iDEFENSE, a security
intelligence company located in Reston, VA. He heads
iDEFENSE Labs and the Vulnerability Aggregation Team
(VAT). iDEFENSE Labs is the research and development arm
of the company, which is responsible for discovering
original security vulnerabilities in hardware and software
implementations, while VAT focuses on researching publicly
known vulnerabilities. His other responsibilities include
developing tools and methodologies to further vulnerability
research, and managing the iDEFENSE Vulnerability
Contributor Program (VCP).

Prior to joining iDEFENSE, Michael established the
Information Systems Assurance and Advisory Services
(ISAAS) practice for Ernst & Young in Bermuda. He is a
frequent presenter at information security conferences.

Michael obtained his Certified Information Systems
Auditor (CISA) designation in 1998 and is a member of
Information Systems Audit and Control Association
(ISACA). He has completed a Master of Science in
Information Systems Technology degree at George
Washington University, has a Bachelor of Commerce degree
from the University of Alberta and is a Chartered
Accountant. Outside of the office, he is a Sergeant with the
Fairfax Volunteer Fire Department.

Adam Greene is a Security Engineer for iDEFENSE, a
security intelligence company located in Reston, VA. His
responsibilities at iDEFENSE include researching original
vulnerabilities and developing exploit code as well as
verifying and analyzing submissions to the iDEFENSE
Vulnerability Contributor Program.

His interests in computer security lie mainly in reliable
exploitation methods, fuzzing, and UNIX based system
auditing and exploit development. In his time away from
computers he has been known to enjoy tea and foosball
with strange old women.

The Art of File Format Fuzzing

In September 2004, much hype was made of a buffer overflow

vulnerability that existed in the Microsoft engine responsible for

processing JPEG files. While the resulting vulnerability itself was

nothing new, the fact that a vulnerability could be caused by a

non-executable file commonly traversing public and private

networks was reason for concern. File format vulnerabilities are

emerging as more and more frequent attack vector. These attacks

take advantage of the fact that an exploit can be carried within

non-executable files that were previously considered to be

innocuous. As a result, firewalls and border routers rarely prevent

the files from entering a network when included as email

attachments or downloaded from the Internet.

As with most vulnerabilities, discovering file format attacks

tends to be more art than science. We will present various

techniques that utilize file format fuzzing that range from pure

brute force fuzzing to intelligent fuzzing that requires an

understanding of the targeted file formats. We will present a

methodology for approaching this type of research and address

issues such as automating the process. Techniques will be

discussed to address challenges such as attacking proprietary file

formats, overcoming exception handling and reducing false

positives. The presentation will include demonstrations of

fuzzing tools designed for both the *nix and Windows platforms

that will be released at the conference and the disclosure of

vulnerabilities discovered during the course of our research.

Michael Sutton
Adam Greene b

l
a

c
k

h
a

t
b

r
ie

f
in

g
s

0002b510h: 3A 00 00 00 68 00 74 00 74 00 70 00 3A 00 2F 00 ; :...h.t.t.p.:./.

0002b520h: 2F 00 77 00 77 00 77 00 2E 00 77 00 61 00 79 00 ; /.w.w.w...w.a.y.

0002b530h: 6E 00 65 00 67 00 72 00 65 00 74 00 7A 00 6B 00 ; n.e.g.r.e.t.z.k.

0002b540h: 79 00 2E 00 63 00 6F 00 6D 00 2F 00 00 00 1F 00 ; y...c.o.m./.....

0002b550h: 5A 3A 0E 00 00 00 43 00 61 00 6E 00 61 00 64 00 ; Z:....C.a.n.a.d.

0002b560h: 61 00 00 00 1F 00 5C 3A 10 00 00 00 4F 00 6E 00 ; a.....\:....O.n.

0002b570h: 74 00 61 00 72 00 69 00 6F 00 00 00 1F 00 5B 3A ; t.a.r.i.o.....[:

0002b580h: 10 00 00 00 57 00 39 00 47 00 20 00 39 00 57 00 ;W.9.G. .9.W.

0002b590h: 39 00 00 00 1F 00 59 3A 14 00 00 00 42 00 72 00 ; 9.....Y:....B.r.

0002b5a0h: 61 00 6E 00 74 00 66 00 6F 00 72 00 64 00 00 00 ; a.n.t.f.o.r.d...

0002b5b0h: 1F 00 5D 3A 20 00 00 00 31 00 32 00 33 00 20 00 ; ..]: ...1.2.3. .

0002b5c0h: 4D 00 61 00 69 00 6E 00 20 00 53 00 74 00 72 00 ; M.a.i.n. .S.t.r.

0002b5d0h: 65 00 65 00 74 00 00 00 03 00 71 3A 04 00 00 00 ; e.e.t.....q:....

0002b5e0h: 00 00 10 00 03 00 55 3A 04 00 00 00 00 00 00 00 ;U:........

0002b5f0h: 1F 00 02 30 0A 00 00 00 53 00 4D 00 54 00 50 00 ; ...0....S.M.T.P.

0002b600h: 00 00 1F 00 03 30 24 00 00 00 77 00 61 00 79 00 ;0$...w.a.y.

0002b610h: 6E 00 65 00 40 00 67 00 72 00 65 00 74 00 7A 00 ; n.e.@.g.r.e.t.z.

0002b620h: 6B 00 79 00 2E 00 63 00 6F 00 6D 00 00 00 1F 10 ; k.y...c.o.m.....

0002b630h: 54 3A 01 00 00 00 0E 00 00 00 0A 00 00 00 53 00 ; T:............S.

0002b640h: 4D 00 54 00 50 00 00 00 1F 10 56 3A 01 00 00 00 ; M.T.P.....V:....

The Art of File Format Fuzzing
iDEFENSE Labs

Michael Sutton – msutton@idefense.com

Adam Greene – agreene@idefense.com

Introduction and Agenda

• Who we are

• What you can expect from the presentation

• Agenda
– Background

– File format fuzzing

1. Identifying targets

2. Creating files

3. Executing files

4. Monitoring for exceptions

5. Identifying vulnerabilities

– Tool Demos

– 0day Vulnerabilities

– Conclusion

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Background – What is file format fuzzing?

• File format Protocol
– Standardized means of communication

• Non-standard formats
– Applications should be capable of dealing with anomalies

• Input validation controls

• Exception handlers

• Error reporting

• What happens when controls aren’t in place?
– Buffer overflows

– Integer overflows

– Signedness issues

– Invalid memory references

– Infinite loops

Background – Historical vulnerabilities

• MS05-009 – Vulnerability in PNG Processing Could Allow

Remote Code Execution

• MS05-002 - Vulnerability in Cursor and Icon Format Handling

Could Allow Remote Code Execution

• MS04-041 - Vulnerability in WordPad Could Allow Code

Execution

• MS04-028 - Buffer Overrun in JPEG Processing (GDI+)

Could Allow Code Execution

• US-CERT TA04-217A – Multiple Vulnerabilities in libpng

(Affecting Mozilla, Netscape, Firefox browsers)

• CAN-2004-1153 – Format String Vulnerabilities in Adobe

Acrobat Reader

digital self defense

Background - MS04-041 MS Word Buffer Overflow

Background - MS04-041 MS Word Buffer Overflow

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Background – What’s the risk?

• Uneducated users
– Users are less likely to be wary of launching non-executable files from

untrusted sources

• Default configurations
– Applications designed for convenience allow processing of many

untrusted files without user intervention

– Many image files will be rendered in web browsers

• Lack of layered security
– Complete network compromise can result from a single user’s trusted

actions (i.e. web browsing) using a 0day file format vulnerability

File Fuzzing – Identifying targets

• File types
– Binary

• Formatted documents (doc, rtf, pdf, etc.)

• Images (jpg, gif, png, etc.)

• Media files (mpg, wav, avi, mov, mp3, etc.)

– ASCII

• XML

• INI

• Default applications
– Registered file types

• Windows – Explorer & RegEdit

– URI handlers

• Windows - Explorer & RegEdit

digital self defense

File Fuzzing – Registered file types

File Fuzzing – Registered file types

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

File Fuzzing – URI handlers

File Fuzzing – URI handlers

digital self defense

File Fuzzing – Identifying targets on Linux

• Interesting Targets on Linux
– Antivirus products

• Fuzzing Linux AV engines locally can lead to a remote vulnerability

– Media Players

• RealPlayer

– Document Viewers

• Adobe Acrobat Reader

– Web Browsers

• Think image formats

File Fuzzing – Creating files

• Brute force – manipulating all bytes
– Data types

• Integers

– (Un)signed byte

– (Un)signed word

– (Un)signed dword

• ASCII

– C-style strings

» ASCII string with a terminating NULL

– XDR-style length tagged strings

» SUNRPC: ASCII string padded out to %4, 4 byte MSB length prepended

– Other common length tagged strings

» 1 byte length prepended/appended

» 2 byte length prepended/appended

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

File Fuzzing – Creating files

• Picking interesting values
– Integers

• Negative numbers (0xffffffff, 0x80000000, etc)

• Large numbers (0x7fffffff,0x20000000, etc)

• Small values such as 0-10 (MS04-028)

• Header values identifying the length of header/data segments

– ASCII

• Large strings / empty strings

• Strings with “inaccurate” length tags

– Long string, short tag

– Short string, long tag

• Strings with “accurate”, but long length tags (MS05-002, MS05-009, MS04-
041)

• Strings with format specifiers (CAN-2004-1153)

File Fuzzing – Creating files

• Why are these values so interesting?
– Decrementing small integers can cause them to wrap

– Multiplying, adding, and incrementing large integers can cause them to
wrap

– Inconsistent methods for determining size can lead to overflows

• Mixing up the true size of a string with the value the file has specified for it

– Using user supplied data as a format string is obviously dangerous

digital self defense

File Fuzzing – Creating files

• Brute force fuzzing pros/cons
– Pros

• No information about the file format is necessary

• Automation of executing applications

• Automation of detecting of exceptions

– Cons

• Difficult to identify/correct other dependent values (i.e. CRC-32 checksums)

• Less efficient than intelligent fuzzing

• Many false positives

File Fuzzing – Creating files

• Intelligent fuzzing
– Researching open file formats

• Standards groups

– ISO - http://www.iso.org/

– W3C - http://www.w3.org/

• Graphics (JPEG, PNG, SVG, etc.)

– W3C - http://www.w3.org/Graphics/

• Audio (MIDI, MP3, WAV, etc.)

– MIDI - http://www.midi.org/about-midi/specinfo.shtml

• Compressed/Archive (ZIP, TAR, RAR, etc.)

– ZIP - http://www.pkware.com/company/standards/appnote/appnote.txt

• Binary (a.out, ELF, COFF)

– Microsoft – PE & COFF

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

File Fuzzing – Creating files

• Intelligent fuzzing (cont’d)
– Researching proprietary file formats

• Previous reverse engineering

– Your good friend Google

• File diffing

– Headers vs. data

– Header name/value pairs

– Resources for multiple file format specs

• http://www.wotsit.org/

• http://www.sonicspot.com/guide/fileformatlist.html

File Fuzzing – Creating files

• Intelligent fuzzing pros/cons
– Pros

• Can fuzz every field of the file properly

• Can target “interesting” fields

• Can ensure that lengths across blocks remain valid

• Can ensure that CRC-32 values and other arbitrary calculations across

blocks stay valid

– Cons

• The fuzz is only as complete as your file definition (fileSPIKE script)

• You may need many different fileSPIKE scripts for one format to test

out of order fields, files with different capabilities, etc

• Constructing a thorough set of scripts can be time consuming

digital self defense

File Fuzzing – Executing files

• Executing/processing files
– Continual execution

• Scripting

• GUI/console apps

– Timed termination

• Windows

– taskkill /PID [PID]

– Windows API - i.e. killProcess()

• *nix

– kill pid

– UNIX API – i.e. kill()

File Fuzzing – Executing files

• Browser Based File processing
– To test file processing code in browsers and ActiveX controls (images,

media files, etc.)

– Continual execution

• META REFRESH cgi

• Same method used in mangleme by lcamtuf

– Timed termination

• Not required

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

File Fuzzing – Monitoring for exceptions

• Identifying exception handlers

– Function hooking

– Debugging library/API

• Linux ptrace

• Standard output/error

• Error logs

– Microsoft event viewer

– Application logs

• Application crash

– Unhandled exceptions

• Return value

File Fuzzing – Identifying exploitable vulns

• Stack overflows
– Microsoft Interactive Training Buffer Overflow

• Heap overflows
– GNU Binutils readelf

• Integer overflows
– Microsoft JPEG/GDI+ (MS04-028)

• Format Strings
– Adobe Acrobat Reader (CAN-2004-1153)

digital self defense

Automation - Tools

Linux – SPIKEfile and notSPIKEfile

Windows - fileFUZZ

Automation - Tools

Linux – SPIKEfile

• Simple adaptation of Immunity, Inc SPIKE
– Modified to target files

– Flexible execution and exception monitoring using ptrace

– Multiple processes

– CRC-32 over block support using

– Takes .spk scripts as input

*Used to discover RealPlayer RealText Format String bug

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Automation - Tools

Linux – notSPIKEfile

• Simple baseline fuzzer
– Requires a valid file to work from

– Flexible execution and exception monitoring using ptrace

– Multiple Processes

*Used to discover GNU Binutils readelf heap based integer overflow

Automation - Tools

Windows - FileFuzz

• Simple baseline fuzzer
– Requires a valid file to work from

– Flexible execution and exception monitoring

– Targets files with predefined handlers

– Can handle ASCII and binary files

– Has fancy GUI

*Used to discover Microsoft Windows Interactive Training heap based
buffer overflow (MS05-031)

digital self defense

0day Vulnerabilities

• Microsoft Interactive Training Buffer Overflow
– CBO file parsing stack overflow

• RealPlayer RealText Format String
– .rp file parsing format string

• Readelf Heap Overflow
– GNU Binutils readelf heap based integer overflow

Conclusion

• Future trends and predictions
– Attack

• Further discovery tool automation

• Increase in rate of vulnerability discovery

– Defend

• More file types blocked at network perimeter

• File scanning utilities implement parsing functionality to identify non-
standard file formats

• File scanning utilities implement parsing functionality to identify malicious
content (i.e. shellcode)

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Questions?

digital self defense

